

«ПРОБЛЕМЫ ЭКОЛОГИИ ВОЛЖСКОГО БАССЕЙНА» («ВОЛГА 2019»)

Труды 4-й всероссийской научной конференции Bыnуск 2, 2019 ε .

ISBN 978-5-901722-65-7

УДК 556

Терешина Мария Алексеевна, инженер ФГБОУ ВО «Московский государственный университет имени М.В.Ломоносова»

Соколов Дмитрий Игоревич, к.г.н., старший научный сотрудник ФГБОУ ВО «Московский государственный университет имени М.В. Ломоносова»

Ерина Оксана Николаевна, к.г.н., научный сотрудник ФГБОУ ВО «Московский государственный университет имени М.В.Ломоносова»

Вилимович Елена Анатольевна, магистрант ФГБОУ ВО «Московский государственный университет имени М.В.Ломоносова»

ФГБОУ ВО «Московский государственный университет имени М.В.Ломоносова» 119991, Москва, ГСП-1, Ленинские горы, МГУ, д. 1, географический факультет

Работа выполнена при поддержке Русского географического общества в рамках гранта «Экспедиция Плавучий университет Волжского бассейна» (проект № 02/2019-P).

ПРИРОДНЫЙ ФОН ИЛИ АНТРОПОГЕННОЕ ЗАГРЯЗНЕНИЕ: ФОРМИРОВАНИЕ КАЧЕСТВА ВОДЫ РЕК ЛИНДЫ И КУДЬМЫ

Ключевые слова: малые реки, качество воды, природный геохимический фон, загрязнение вод, *XПК*.

Аннотация. При количественной оценке качества воды и степени загрязненности водных объектов часто возникают затруднения, связанные с невозможностью отделения антропогенного загрязнения от природного фона. Подробный анализ продольной изменчивости состава воды двух небольших рек-притоков Чебоксарского водохранилища показывает, как схожие особенности химического состава могут быть продуктом естественного ландшафта, а могут формироваться в результате антропогенного воздействия.

Введение

Проблема загрязнения воды является крайне важной для всего водохозяйственного комплекса, в связи с чем в настоящее время используется множество количественных показателей, призванных объективно определить степень загрязненности каждого водного объекта — от отдельных ПДК до комплексных индексов. Однако, в настоящее время все более очевидными становятся недостатки таких универсальных критериев, в частности — неадекватное завышение или занижение уровня загрязненности для территорий, где повышенное или пониженное содержание отдельных элементов связано с природными

факторами — зональными или азональными [1]. Именно это характерно для малых рек Волжского бассейна, в верхней и средней частях которого часто отмечаются повышенное фоновое содержание органических веществ и некоторых других элементов химического состава. Однако данный факт часто позволяет водопользователям, сбрасывающим недостаточно очищенные сточные воды, аппелировать к природным причинам возникновения повышенных концентраций. Поэтому для решения задач управлением качества воды Волги и других крупных водных артерий этого региона необходимо разделять природные и антропогенные факторы формирования качества воды.

Материалы и методы

В 2018 и 2019 гг. мы исследовали продольные изменения химического состава вод рек Кудьмы и Линды, являющихся притоками Чебоксарского водохранилища. Обе реки — Кудьма и Линда — протекают по территории Нижегородской области и относятся к категориям малых и средних рек. Река Кудьма впадает в Волгу с правого берега примерно в 50 км ниже по течению от слияния Волги и Оки, имеет длину 144 км и площадь бассейна 3220 км². В пределах бассейна расположено множество промышленных предприятий Богородского и Кстовского районов области, развито сельскохозяйственное использование земель, что обуславливает высокую антропогенную нагрузку на территорию. В западной части бассейна, сложенной известняками и доломитами, широко распространен карст [2]. По данным Верхне-Волжского управления по гидрометеорологии и мониторингу окружающей среды р.Кудьма является одной из наиболее серьезно загрязненных рек Нижегородской области.

Река Линда впадает в р. Волгу с левого берега примерно в 10 км выше от ее слияния с Окой. Длина р. Линды лишь немного меньше — около 122 км, а водосборный бассейн почти в два раза меньше, чем у р. Кудьмы — 1630 км². Крупных промышленных и сельскохозяйственных предприятий в бассейне Линды нет, в основном территория используется в селитебных целях. Большая часть территории бассейна покрыта сосновыми лесами, достаточно велика доля заболоченных земель. Несмотря на это, по данным Нижегородского управления по гидрометеорологии и мониторингу окружающей среды вода в р.Линде является очень загрязненной и по значениям УКИЗВ относится к 36 классу.

В июле и августе 2019 года нами было отобрано 13 проб в бассейне р. Кудьмы и 12 проб в бассейне р. Линды (рис. 1). В каждой пробе определялось содержание основных ионов, биогенных элементов (кремния, общего и минерального фосфора, общего, аммонийного, нитратного и нитритного азота), а также суммарного содержания органических веществ по величине ХПК.

Результаты и их обсуждение

Реки Кудьма и Линда имеют совершенно различную минерализацию: в водах р. Кудьмы суммарное содержание главных ионов может достигать 1 г/л и более, в то время как для р. Линды характерны значения минерализации около 100 мг/л. Р. Линда характеризуется высокой продольной однородностью солесодержания: диапазон изменений величины удельной электропроводности составляет 143-228 мкСм/см, причем изменения мкСм/см) максимальные (70 происходят после минерализованной р. Кезы (рис. 2). Для Кудьмы размах значений электропроводности гораздо шире – от 870 мкСм/см у истока до почти 2000 мкСм/см в районе устья. Продольное увеличение электропроводности сопровождается в р. Кудьме с увеличением доли сульфатиона и кальция, что говорит о карстовом его происхождении [3].

Особое внимание привлекает содержание органического вещества в обеих реках. Для р. Линды в основном характерны значения около 20 мгО/л, а в самых верховьях водосборного бассейна значение ХПК составило 29,7 мгО/л. При этом повышенные значения ХПК соотносятся с увеличением цветности воды, что позволяет сделать вывод, что поступающее органическое вещество имеет болотное происхождение. Особенно велика

заболоченность в левобережной части бассейна Линды: в р. Алсме значения цветности воды првышали 200°, а величина ХПК – 26,2 мгО/л.

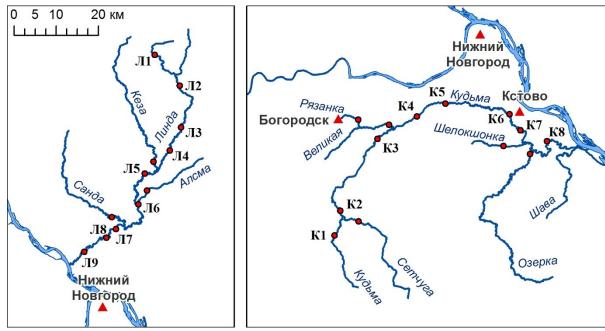


Рис.1. Схема отбора проб в исследуемых речных бассейнах

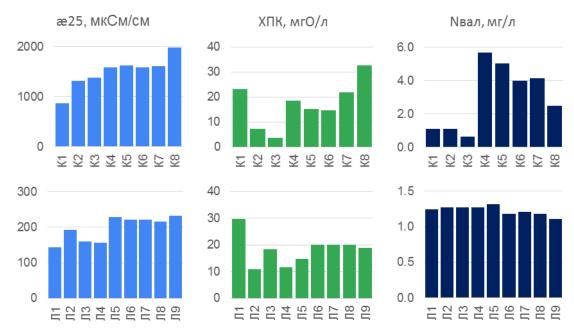


Рис.2. Продольное изменение удельной электропроводности, величина XПК и содержания общего азота в воде р. Кудьмы (верхний ряд) и р. Линды (нижний ряд)

В верховьях р. Кудьмы также наблюдается увеличенное поступление ОВ с заболоченных территорий, хотя значения цветности здесь ниже: у д. Поспелиха (точка К1) и в р. Сетчуге отмечены величины ХПК 23,1-23,8 мгО/л и цветность 30-40°. Ниже содержание ОВ резко снижается: в точках К2 и К3 величина ХПК составляет 4-8 мгО/л, но затем впадение сильно загрязненных притоков приводит к резкому увеличению ХПК: реки Великая и Рязанка, принимающие промышленные сточные воды г. Богородска и характеризующиеся величиной ХПК более 200 мгО/л, увеличивают значение этого показателя в Кудьме до 18-23 мгО/л. После некоторого снижения на последующем участке величина ХПК снова возрастает (более 30 мгО/л в т. К8) после впадения рек Озерки и

Шелокшонки, которые за счет сильной распаханности водосборов выносят большое количество биогенных и органических веществ.

Содержание биогенных элементов в р. Линде также однородно по длине: диапазон изменения концентраций валового азота составил 1,1-1,3 мг/л, фосфора — 70-100 мкг/л, причем соотношение между различными формами также остается почти постоянно. В верховьях р. Кудьмы наблюдается такая же картина, но содержание фосфора плавно растет от истока к устью, достигая 150-170 мкг/л в т. К7 (вероятно, за счет диффузного стока минерального фосфора с сельскохозяйственных земель), а содержание общего азота резко увеличивается ниже впадения р. Великой до 5,0-5,7 мг/л за счет притока неоочищенных коммунальных сточных вод г. Богородска и его предприятий.

Выводы

Реки Кудьма и Линда, несмотря на близкое географическое положение, имеют совершенно различные наборы факторов, формирующих качество их вод. При небольшой антропогенной нагрузке и малом поступлении биогенных элементов р. Линда имеет естественно повышенное содержание органического вещества за счет высокой заболоченности водосбора и поступления в воду большого количества гуминовых веществ. В то же время воды р. Кудьмы, не имеющей такого естественного притока органики, но испытывающей существенную нагрузку стороны промышленного сельскохозяйственного комплекса, часто достигают близких к р. Линде значений ХПК. При этом некоторые увеличение содержания других компонентов химического состава (например, сульфатов) в р. Кудьме связано с природным карстом. Таким образом, эти реки являются примером необходимости отделения антропогенных факторов формирования качества воды от природных. Кроме того, обе реки являются источниками поступления биогенных и органических веществ в Чебоксарское водохранилище, что при высокой антропогенной нагрузке на р. Кудьму обуславливает необходимость дальнейшего мониторинга качества ее вод.

Список литературы:

- [1] Розенберг Г. С. и др. Опыт экологического нормирования антропогенного воздействия на качество воды (на примере водохранилищ Средней и Нижней Волги) //Вопросы экологического нормирования и разработка системы оценки состояния водоемов. 2011. С. 5.
- [2] Чикишев А. Г. Карст Русской равнины. М.: Наука, 1978. 192 с.
- [3] Gavrilov A. M. On the problem of the influence of karst on the hydrological regime of rivers //Hydrology of Fractured Rocks, Proceedings of the Dubrovnik Symposium, IASH. 1967. Vol. 2. Pp. 544-562.

NATURAL BACKROUND OR HUMAN IMPACT: WATER QUALITY OF THE LINDA AND KUDMA RIVERS

Maria Tereshina, Dmitriy Sokolov, Oxana Erina, Elena Vilimovich

Key words: small rivers, water quality, geochemical background, water pollution, COD.

A quantitative assessment of water quality and pollution level is often complicated by inability to separate anthropogenic pollution from natural features. A detailed analysis of water chemistry dynamics along two small tributaries of the Cheboksary Reservoir demonstrates that both natural processes and human impact may create similar chemical features.